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Abstract
We present a self-consistent quantum-theoretical analysis of the ground-state
energy and low-energy excitation spectrum of a dimerized and frustrated
Heisenberg chain by the bosonization representation in the continuum-limit
approach. The frustration effects on the ground-state energy and energy gap
are investigated for α > αc where α is the frustration parameter and αc is its
critical value, above which a frustration-induced energy gap is opened. It is
shown that as α increases, the ground-state energy decreases and the energy
gap increases. We find that the dimerization dependence of the ground-state
energy and energy gap for small dimerization obeys the Cross–Fisher power
law only at α = αc, but departs significantly from it when α > αc. The present
results are in good agreement with numerical analyses from the density–matrix
renormalization-group and exact diagonalization methods. The relevance of
our calculated results to recent experiments on the spin-Peierls compounds
CuGeO3 is also discussed.

1. Introduction

The discovery of the spin-Peierls (SP) transition in the inorganic material CuGeO3 [1] has led to
intense investigations of one-dimensional (1D) spin systems. The SP transition was observed
experimentally in CuGeO3 at a temperature TSP ≈ 14 K. The basic structure of CuGeO3

consists of edge-sharing CuO6 octahedra forming CuO4 chains along the crystallographic c

axis. The dimerization of S = 1/2 Cu ions has been determined below 14 K by neutron
diffraction measurements [2]. The magnetic properties of the SP compound CuGeO3 may
be described by an S = 1/2 antiferromagnetic Heisenberg chain with both dimerization and
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frustration, i.e., an alternation δ of the nearest-neighbour (NN) exchanges and a next-nearest-
neighbour (NNN) exchange αJ . The model Hamiltonian is given by

H = J
∑
i

{[1 + δ(−1)i]SiSi+1 + αSiSi+2} (1)

where Si is the S = 1/2 spin operator on site i and the summation over i is taken over all
the sites in the Heisenberg chain, J > 0 is the NN exchange coupling, and α the frustration
parameter from the NNN coupling. It has been shown that the magnetic susceptibility of
CuGeO3 in a uniform phase (δ = 0) can be accurately reproduced by a frustrated Heisenberg
chain model [3]; from this fit the frustration was estimated to be α ≈ 0.35. The ground state
of the uniform model can be exactly solved for α = 0.5 [4]. The ground state is doubly
degenerate for the ring and the two states are representable as the two Kekule structures of the
valence–bond theory. Analytical and numerical studies [5–7] of the model on the δ = 0 line
show a transition from a gapless phase for α < αc to a gapped phase for α > αc. The value
of αc has been accurately computed to be 0.2411 [7]. The α = 0 and δ > 0 line corresponds
to a dimerized spin chain, in which the excitation spectrum is always gapped. In addition, the
frustrated SP model can also describe the two-leg spin-ladder system with frustration.

Recently, much theoretical attention has been attracted to the frustrated SP model. Chitra
et al [8] studied the ground-state phase diagram and low-energy properties by using a density–
matrix renormalization group (DMRG) technique. Zang et al [9] used a renormalization group
method and the bond-operator mean-field approximation to calculate the ground-state phase
diagram and excitation spectrum. By the exact diagonalization method, numerical studies of
the low-energy excitation spectrum have been given by Bouzerar et al [10]. On the other hand,
in recent years the field-theoretical continuum-limit approach has been successfully used to
study the SP compounds and spin-ladder systems [5, 11–13]. It is well known that the SP
systems can be mapped, via the Jordan–Wigner transformation and bosonization under the
continuum-limit approximation [5], onto a 1D single-frequency sine-Gordon (SG) model with
a boson-field operator cos(βφ/2). Therefore, it is interesting to discuss the frustration effects
on these systems in the frame of the SG model. In the presence of frustration, by adding another
boson-field operator cosβφ in the phase Hamiltonian of the SP chain, the frustrated SP chain
can be mapped onto a 1D double-frequency SG model [14]. In contrast to the single-frequency
SG model, which can be solved exactly at special values of β and whose excitation spectrum
is well understood [15], we know less about the excitation spectrum of the double-frequency
SG model. Since there are different scaling dimensions of the relevant operators in the double-
frequency SG model, dim[cosβφ] = 4 dim[cos(βφ/2)], the conventional way of treating the
double-frequency SG model is to keep only the more relevant term cos(βφ/2) then reduce to
a single-frequency SG model. Recent studies on the frustrated spin-Peierls model have shown
that the interplay between the two relevant operators is important [10] and the conventional
treatment of the double-frequency SG model is no longer valid in determining the excitation
spectrum of the system. As a result, it is highly desirable to develop an effective approach in
studying the frustration effects on the elementary excitation spectrum of a frustrated SP chain
in the frame of the 1D double-frequency SG model.

Due to the problem of infrared divergence, the traditional perturbation approach becomes
invalid in determining the low-energy behaviour of the single-frequency SG model. Although
the renormalization group theory can give the scaling flow of the model, other useful
information such as the single-particle excitation spectrum and many-particle bound states
cannot be easily obtained. Recently, a self-consistent quantum theory [16] has been developed
for the low-energy properties of the single-frequency SG model. Based on this method, the
infrared divergence is effectively removed and the excitation spectrum can be obtained self-
consistently. In the present paper, we extend this method to the double-frequency SG model
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and perform an analytical study on the low-energy properties of the frustrated SP chain.
This paper is organized as follows. In section 2 we map the frustrated SP system,

in the adiabatic limit, onto the 1D double-frequency SG model via the Jordan–Wigner
transformation and bosonization representation in the continuum limit. Using the self-
consistent quantum theory, the ground-state energy and the energy gap as functions of
dimerization and frustration parameters are derived analytically with the help of a self-
consistent equation of a renormalization parameter. In section 3 we focus our attention on
the frustration effects on the ground-state energy and energy gap of a general α–δ model for
α > αc. The theoretical results are compared with recent experimental data of CuGeO3 as well
as with existing numerical results. We also discuss contributions of both dimerization and
frustration to the energy gap which is opened by the two mechanisms above. A brief summary
of the results is given in section 4.

2. Theoretical approach

First, using the Jordon–Wigner transformation: S+
i = c+

i exp[iπ
∑

j<i c
+
j cj ], S−

i =
exp[−iπ

∑
j<i c

+
j cj ]ci, and Sz

i = c+
i ci − 1/2, we transform Hamiltonian (1) into the spinless

fermion Hamiltonian

H = J
∑
i

[1 + δ(−1)i]
[
(c+

i ci+1 + c+
i+1ci)/2 + (ni − 1/2) (ni+1 − 1/2)

]
+α{[c+

i (ni+1 − 1/2)ci+2 + h.c.] + (ni − 1/2)(ni+2 − 1/2)}. (2)

In the continuum limit, Hamiltonian (2) can be bosonized to obtain a tractable bosonic theory
in 1+1 dimensions [14]. The resulting continuum Hamiltonian is given by

H =
∫

dx[A(∂xϕ)
2 + Cp2 − B sin ϕ − D cos 2ϕ] (3)

with

[ϕ(x), p(x ′)] = iδ(x − x ′). (4)

The constants in equation (3) are A = (Ja/8π)[1 + (3 + 7α)/π ], B = Jδ/a, C =
2πaJ [1−(1+α)/π ], andD = (J/2a)(1−3α),where a is the lattice constant. The frustration
parameter α appears in A, C,and D, but B is independent of α because it comes only from
the NN interaction. By making the transformation ϕ → ϕ + π/2 and rescaling the boson
field operator ϕ(x) and its canonical momentum operator p(x) as φ(x) = (A/C)1/4ϕ(x),

P (x) = (C/A)1/4p(x), Hamiltonian (3) can be further transformed into the following double-
frequency SG model

H = v

∫
dx

[
1

2
(∂xφ)

2 +
1

2
P 2 − α1

β2
cosβφ − α2

β2
cos

β

2
φ

]
(5)

where v = 2
√
AC is the spin wave velocity, and

α1 = −2D

A
= −8π2 1 − 3α

π + 3 + 7α
(6)

α2 = 2B

A
= 16π2 δ

π + 3 + 7α
(7)

β2 = 4

√
C

A
= 16π

√
π − 1 − α

π + 3 + 7α
. (8)

Next, we attempt to apply the self-consistent quantum theory [16] to the 1D double-
frequency SG model. Since the integrand in equation (5) is a minimum at φ = 0 for positive
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α1 and α2, we can make a perturbation expansion in the vicinity of φ = 0 for two cosine
terms in equation (5) and omit the higher order terms. On the other hand, since frustration and
dimerization provide two principally different mechanisms for the energy-gap formation, we
adjust parameters α1 and β according to [10] as follows:

α1 = 8π2 α − αc

π + 3 + 7α
(9)

β2 = 8π

√
1 − (α − αc)

1 + (α − αc)
(10)

where αc = 0.2411. In this paper we consider only the case of α � αc. Here we briefly outline
the procedure of the self-consistent theory. In momentum space the Bose field operator φ(x)
and its canonical momentum operator P(x) are defined as

φ(x) =
∑
k

(2 | k |)−1/2 exp(ikx)(bk + b+
−k) (11)

P(x) = − i
∑
k

(| k | /2)1/2 exp(ikx)(bk − b+
−k). (12)

where the summation over k is performed in the range 0 �| k |� π/a. Then we consider the
following Bogoliubov transformation in order to deal with the infrared divergence:

U = exp

[∑
k

(γk/2)(b+
k b

+
−k − bkb−k)

]
(13)

where bk and b+
k satisfy the standard boson commutator, and γk will be determined below. The

transformed Hamiltonian H̃ = UHU−1 is given by

H̃ =
∑
k

v | k |
[
b+
k bk cosh(2γk) − (b+

k b
+
−k + bkb−k)

1

2
sinh(2γk) +

1

2
cosh(2γk)

]

−vα1

β2

∫
dx cos

[∑
k

β(2 | k |)−1/2e−γk exp(ikx)(bk + b+
−k)

]
(14)

−vα2

β2

∫
dx cos

[∑
k

β

2
(2 | k |)−1/2e−γk exp(ikx)(bk + b+

−k)

]
.

We normally order the cosine terms in equation (14) and expand them to second order in the
bosonic operators. The resulting Hamiltonian is given by

H̃ = H̃0 + H̃1 + H̃2 (15)

where

H̃0 = v
∑
k

[
1

2
| k | cosh(2γk) − α1ξ

4

a2β2
− α2ξ

a2β2

]
(16)

H̃1 = v
∑
k

[
| k | cosh(2γk) +

α1ξ
4 exp(−2γk)

2a2 | k | +
α2ξ exp(−2γk)

8a2 | k |
]
b+
k bk (17)

H̃2 = −v

2

∑
k

[
| k | sinh(2γk) − α1ξ

4 exp(−2γk)

2a2 | k | − α2ξ exp(−2γk)

8a2 | k |
]
(b+

k b
+
−k + bkb−k) (18)

with

ξ = exp

(
−β2

16

∑
k

e−2γk

| k |

)
. (19)
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In equation (15) unimportant constant terms have been neglected. The H̃2 term in equation
(18) contains nondiagonal terms of the boson operators, which can be removed by selecting
appropriate γk:

γk = 1

4
ln

(
1 +

α1ξ
4

a2k2
+

α2ξ

4a2k2

)
. (20)

Combining equations (19) and (20), we obtain a self-consistent equation for ξ

ξ =

 α1ξ
4 + 1

4α2ξ[
1 +

√
1 + α1ξ 4 + 1

4α2ξ
]2


β2/32π

(21)

where an upper cutoff of the integral, 1/a, has been used. Substituting equation (20) into
equations (16) and (17), we find the ground-state energy per site to be

E0 = v

(
1

4πa2

√
1 + α1ξ 4 +

1

4
α2ξ − α1ξ

4

a2β2
− α2ξ

a2β2

)
(22)

and the single-particle excitation spectrum

ωk =
√
v2k2 + )2 (23)

with the energy gap given by

) =
√
)2

1 + )2
2 (24)

where )1 = v
√
α1ξ 4/a and )2 = v

√
α2ξ/2a stand for the contributions of frustration and

dimerization to the energy gap, respectively. We will take a = 1 below.

3. Results and discussions

Equations (21)–(24) constitute one of the main results of this paper, suitable for the S = 1/2
Heisenberg chain with both dimerization and frustration. They can reproduce previous
theoretical results in several special cases.

(1) In the frustrated case without dimerization (δ = 0 and so α2 = 0), behaviour of the model
is governed by the term α1 cosβφ which describes the frustration effects. It is found [16]
that for β2 > 8π , there is no nonzero solution of ξ in equation (21), indicating gapless
behaviour; on the other hand for β2 < 8π , there is a nonzero solution of ξ and so the
gap appears. The critical value is β2 = 8π , corresponding to α = αc. As a result, with
increasing frustration, the system undergoes a transition at αc from the gapless phase to
the gapped phase. This is a second-order Kosterlitz–Thouless-type phase transition [17].

(2) In the case of α = αc and small δ, it follows from equations (9) and (10) that α1 = 0 and
β2 = 8π so that equation (5) reduces to a standard single-frequency SG model with the
term α2 cos(βφ/2). The self-consistent equation (21) for ξ is simplified to

ξ 3/2

(√
ξ +

4

α2
+

√
4

α2

)
= 1. (25)

There is always a nonzero solution of ξ in equation (25) for any δ, indicating that a finite
gap always exists in this case. Let us calculate analytically the asymptotic behaviour of
the ground-state energy and the energy gap as functions of the dimerization parameter in
the limit of δ 
 1. To investigate behaviour near the uniform limit, it is appropriate to



6524 X F Jiang et al

calculate the difference between the ground-state energies for a small dimerization and in
the uniform limit:

ε0(δ) = 1

J
[E0(0, α) − E0(δ, α)]. (26)

Since 1/α2 � 1 and ξ 
 1 in the limit δ → 0, it follows from equations (7) and (25)
that α2 ∝ δ and ξ ∝ δ1/3. Taking into consideration that α2ξ ∝ δ4/3, from equations (24)
and (26), we obtain )(δ) ∝ δ2/3 and ε0 ∝ δ4/3. The results obtained for small δ are in
excellent agreement with the Cross and Fisher theory [18], which has also been obtained
from the DMRG studies [8] and from the exact diagonalization results [10].

(3) Along the line 2α + δ = 1, the ground state of the model is known to be exactly
solvable. In the α–δ plane, this line is a boundary between two distinct regimes: for
2α + δ � 1, the dominant peak in the static magnetic structure factor is always at q∗ = π ;
whereas for 2α + δ > 1, with increasing α and δ, q∗ continuously decreases from π to
π/2 [8], exhibiting incommensurate behaviour. Our calculation shows that along the line
2α + δ = 1, the variation of E0(δ) in units of J varies linearly with δ, as shown in figure 1.
The slope of the straight line is −0.46, which is somewhat different from a variational
result of −3/8 [8]. Figure 2 shows the variation of the gap with δ along this line, which
is in better agreement with the DMRG result (circular points) [8].

0.0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.1

0.0

0.1

α=(1-δ)/2

E
0 /

J

δ

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.4

0.8

1.2

1.6

α=(1-δ)/2

∆ /
J

δ

Figure 1. Ground-state energy per site as a function of δ
along the line 2α + δ = 1.

Figure 2. Energy gap as a function of δ along the line
2α+δ = 1. Circular points stand for the DMRG data [8].

From equations (21)–(24), one can study variations of ε0 and ) with δ and α in a more
general case. It is found that for fixed δ, with increasing α, ε0 increases or the ground-state
energy E0(δ, α) decreases, as shown in figure 3. At the same time, the increase in the gap
with α is shown in figure 4. On the other hand, with increasing δ for fixed α, the ground-state
energy decreases and the gap increases.

We now compare the calculated results with recent experimental data of CuGeO3 [1].
Many authors have made an attempt at evaluating α and J from experimental data of the
magnetic susceptibility [1]. Riera and Dobry [19] obtained α = 0.36 and J = 160 K by
fitting the maximal point of magnetic susceptibility. Using Faraday rotation, Nojiri et al [20]
estimated J � 183 K. The magnetic susceptibility of CuGeO3 in the uniform phase can be
accurately reproduced by a frustrated Heisenberg chain model with α ≈ 0.35 [3], very close
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Figure 3. Change in the ground-state energy per site as
a function of δ for different α.

Figure 4. Energy gap as a function of δ for different α.

to the previous estimate [19]. From J ≈ 160 K and α = 0.35 and by taking dimerization
δ = 0.012, the frustrated Heisenberg chain model [21] can reproduce ) ≈ 2.15 meV which
was experimentally determined by inelastic neutron scattering [22]. With J = 160 K and
α = 0.35, we get δ = 0.0096, which is in good agreement with the estimate by exact
diagonalization [23] but slightly smaller than δ = 0.012 [21].

We wish to make a comparison between the present analytical results and numerical data.
Figure 5(a) shows the calculated gap (solid line) as a function of α for a fixed value of δ = 0.2,
in which circular points stand for the extrapolated values of ) using exact diagonalization
techniques with periodic boundary conditions for chains with up to L = 26 sites [10]. On the
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∆ /
J

δ

δ=0.2

∆ /
J

α

Figure 5. (a) Energy gap as a function of α for δ = 0.2. Cricular points stand for the exact
diagonalization data [10]. (b) Energy gap as a function of δ for α = 0.35.
Square and cricular points stand for the exact diagonalization data from [21] and [23], respectively.
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other hand, figure 5(b) shows the calculated gap as a function of δ for selected α = 0.35, in
which square and circular points stand for the numerical data from the Lanczos diagonalization
techniques [21, 23]. It is found that our analytical results are somewhat greater than numerical
data with a relative difference of less than about 12%. This difference may stem from the fact
that we have neglected the renormalization of the parameters in transforming the lattice model
equation (1) into the continuum model equation (3) [24]. The renormalized values of the
parameters in the continuum models can be found by solving the appropriate renormalization
ground equations [25] but a detailed discussion of this problem is beyond the scale of the
present paper. On the other hand, the higher-order terms are omitted when we expand the
exponential functions in equation (14) to obtain equations (15)–(18). The comparison with
numerical results indicates that the present theory gives an appropriate description for the case
of weak dimerization.

In order to see the asymptotic behaviour of the ground-state energy ε0 and the gap ) as a
function of δ for various frustrations, figures 6 and 7 show the log–log plots of ε0 and) versus δ,
respectively. It is found that the Cross–Fisher power law [18] holds only at α = αc = 0.2411,
but is no longer valid for α > αc. When α increases, the deviation from linear behaviour
becomes large, which can be clearly seen in figures 6 and 7. Similar behaviour has also been
found by Yokoyama and Saiga [23]. Finally, we discuss the contributions of the two cosine
terms in equation (5) to the energy gap. For α > αc, frustration and dimerization provide two
independent mechanisms for energy–gap formation. Figure 8 shows the ratio r = )1/)2 as
a function of δ for different α. It is found that r is small for α close to αc; when α increases, r
rapidly increases, especially for δ < 0.2. This result is consistent with that of [10].
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0.01
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0.2411
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1E-3 0.01 0.1
0.01

0.1

1

0.2411

0.35

0.4

0.45

α=0.5

∆ /
J

δ

Figure 6. Log–Log plot of ε0 versus δ for different α. Figure 7. Log–Log plot of )/J versus δ for different α.

4. Summary

We have analytically studied the ground-state energy and elementary excitations of a dimerized
and frustrated Heisenberg chain by the bosonization technique in the continuum-limit approach
combined with the self-consistent quantum theory. It has been shown that as the frustration
parameter α increases from αc = 0.2411, the ground-state energy decreases and the energy
gap increases. For small δ and at α = αc, the energy gap scales as δ to the power 2/3, while
the change in the ground-state energy scales with the power 4/3. The Cross–Fisher power law
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Figure 8. Ratio )1/)2 as a function of δ for different α

holds only at α = αc, but becomes invalid with increasing α. Our analytical results are in good
agreement with other numerical results from the DMRG and from exact diagonalization. The
calculated results are of relevance for the magnetic excitations in the SP compound CuGeO3.
Starting from the 1D quantum double-frequency SG model, we have discussed contributions
of the dimerization and frustration to the energy gap. These are two independent mechanisms
that give rise to the energy gap. The frustration-induced energy gap increases gradually as α
is increased from αc.
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